Momen Inersia

Momen inersia (Satuan SI : kg m2) adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.

Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.

Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait

Definisi skalar

Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:

I = \int r^2 \,dm\,\!

di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.
Analisis

Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh

I \triangleq m r^2\,\!

Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:

I \triangleq \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!

Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:

I \triangleq \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!

di mana

V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.

Diagram perhitungan momen inersia sebuah piringan. Di sini k adalah 1/2 dan \mathbf{r} adalah jari-jari yang digunakan untuk menentukan momen inersia

Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:

I = k\cdot M\cdot {R}^2 \,\!

di mana

M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan “konstanta inersia”, yang berbeda-beda tergantung pada objek terkait.

Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:

* k = 1, cincin tipis atau silinder tipis di sekeliling pusat
* k = 2/5, bola pejal di sekitar pusat
* k = 1/2, silinder atau piringan pejal di sekitar pusat.

Dibawah ini merupakan daftar momen inersia dari beberapa benda tegar yang digunakan dalam perhitungan.

Keterangan :

I adalah momen inersia benda
m adalah massa benda
L adalah panjang benda

Benda Poros Gambar Momen inersia
Batang silinder Pusat Moment of inertia rod center.png I = \frac{1}{12}\,\!mL^2
Batang silinder Ujung Moment of inertia rod end.png I = \frac{1}{3}\,\!mL^2
Silinder berongga Melalui sumbu Moment of inertia thin cylinder.png I = mR2
Silinder pejal Melalui sumbu Moment of inertia thick cylinder.png I = \frac{1}{2}\,\!mR^2
Silinder pejal Melintang sumbu Moment of inertia thick cylinder h.png I = \frac{1}{4}\,\!mR^2 + \frac{1}{12}\,\!mL^2
Bola pejal Melalui diameter Moment of inertia solid sphere.svg I = \frac{2}{5}\,\!mR^2
Bola pejal Melalui salahsatu garis singgung Moment of inertia solid sphere.svg I = \frac{7}{5}\,\!mR^2
Bola berongga Melalui diameter Moment of inertia hollow sphere.svg I = \frac{2}{3}\,\!mR^2

About these ads

About Herdiaman Saragih

I Am a Global Product

Posted on 12 Oktober 2011, in Uncategorized. Bookmark the permalink. Tinggalkan komentar.

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

Ikuti

Get every new post delivered to your Inbox.

%d blogger menyukai ini: